Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474256

RESUMO

The aim of this work was to use and optimize a 1.5 Tesla magnetic resonance imaging (MRI) system for three-dimensional (3D) images of small samples obtained from breast cell cultures in vitro. The basis of this study was to design MRI equipment to enable imaging of MCF-7 breast cancer cell cultures (about 1 million cells) in 1.5 and 2 mL glass tubes and/or bioreactors with an external diameter of less than 20 mm. Additionally, the development of software to calculate longitudinal and transverse relaxation times is described. Imaging tests were performed using a clinical MRI scanner OPTIMA 360 manufactured by GEMS. Due to the size of the tested objects, it was necessary to design additional receiving circuits allowing for the study of MCF-7 cell cultures placed in glass bioreactors. The examined sample's volume did not exceed 2.0 mL nor did the number of cells exceed 1 million. This work also included a modification of the sequence to allow for the analysis of T1 and T2 relaxation times. The analysis was performed using the MATLAB package (produced by MathWorks). The created application is based on medical MR images saved in the DICOM3.0 standard which ensures that the data analyzed are reliable and unchangeable in an unintentional manner that could affect the measurement results. The possibility of using 1.5 T MRI systems for cell culture research providing quantitative information from in vitro studies was realized. The scanning resolution for FOV = 5 cm and the matrix was achieved at a level of resolution of less than 0.1 mm/pixel. Receiving elements were built allowing for the acquisition of data for MRI image reconstruction confirmed by images of a phantom with a known structure and geometry. Magnetic resonance sequences were modified for the saturation recovery (SR) method, the purpose of which was to determine relaxation times. An application in MATLAB was developed that allows for the analysis of T1 and T2 relaxation times. The relaxation times of cell cultures were determined over a 6-week period. In the first week, the T1 time value was 1100 ± 40 ms, which decreased to 673 ± 59 ms by the sixth week. For T2, the results were 171 ± 10 ms and 128 ± 12 ms, respectively.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Tamanho da Amostra , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Técnicas de Cultura de Células
2.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338997

RESUMO

The aim of the study was to investigate the effect of Trastuzumab on the MCF-7 and CRL-2314 breast cancer cell lines. Additionally, an attempt was made to optimize magnetic resonance spectroscopy (MRS) for cell culture studies, with particular emphasis on the impact of treatment with Trastuzumab. The research materials included MCF-7 and CRL-2314 breast cancer cell lines. The study examined the response of these cell lines to treatment with Trastuzumab. The clinical magnetic resonance imaging (MRI) system, OPTIMA MR360 manufactured by GEMS, with a magnetic field induction of 1.5 T, was used. Due to the nature of the tested objects, their size and shape, it was necessary to design and manufacture additional receiving coils. They were used to image the tested cell cultures and record the spectroscopic signal. The spectra obtained by MRS were confirmed by NMR using a 300 MHz NMR Fourier 300 with the TopSpin 3.1 system from Bruker. The designed receiving coils allowed for conducting experiments with the cell lines in a satisfactory manner. These tests would not be possible using factory-delivered coils due to their parameters and the size of the test objects, whose volume did not exceed 1 mL. MRS studies revealed an increase in the metabolite at 1.9 ppm, which indicates the induction of histone acetylation. Changes in histone acetylation play a very important role in both cell development and differentiation processes. The use of Trastuzumab therapy in breast cancer cells increases the levels of acetylated histones. MRS studies and spectra obtained from the 300 MHz NMR system are consistent with the specificity inherent in both systems.


Assuntos
Neoplasias da Mama , Histonas , Humanos , Feminino , Trastuzumab/farmacologia , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias da Mama/tratamento farmacológico
3.
ACS Appl Eng Mater ; 1(12): 3237-3253, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38148950

RESUMO

The design of shielding materials against ionizing radiation while simultaneously displaying enhanced multifunctional characteristics remains challenging. Here, for the first time, we present moldable paraffin-based iron nano- and microcomposites attenuating γ- and X-radiation. The moldability was gained by the warmth-of-hands-driven plasticity, which allowed for obtaining a specific shape of the composites at room temperature. The manufactured composites contained iron particles of various sizes, ranging from 22 nm to 63 µm. The target materials were widely characterized using XRD, NMR, Raman, TGA, SEM, and EDX. In the case of microcomposites, the shielding properties were developed at two concentrations: 10 and 50 wt %. The statistically significant results indicate that the iron particle size has a negligible effect on the shielding properties of the nano- and microcomposites. On the other hand, the higher iron particle contents significantly affected the attenuating ability, which emerged even as superior to the elemental aluminum in the X-ray range: at a 70 kV anode voltage, the half value layer was 6.689, 1.882, and 0.462 cm for aluminum, paraffin + 10 wt % Fe 3.5-6.5 µm, and paraffin + 50 wt % Fe 3.5-6.5 µm microcomposites, respectively. Importantly, the elaborated methodology-in situ cross-verified in the hospital studies recording real-life sampling-opens the pathway to high-performance, eco-friendly, lightweight, and recyclable shields manufactured via fully reproducible and scalable protocols.

4.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675075

RESUMO

Artificial intelligence has been entering medical research. Today, manufacturers of diagnostic instruments are including algorithms based on neural networks. Neural networks are quickly entering all branches of medical research and beyond. Analyzing the PubMed database from the last 5 years (2017 to 2021), we see that the number of responses to the query "neural network in medicine" exceeds 10,500 papers. Deep learning algorithms are of particular importance in oncology. This paper presents the use of neural networks to analyze the magnetic resonance imaging (MRI) images used to determine MRI relaxometry of the samples. Relaxometry is becoming an increasingly common tool in diagnostics. The aim of this work was to optimize the processing time of DICOM images by using a neural network implemented in the MATLAB package by The MathWorks with the patternnet function. The application of a neural network helps to eliminate spaces in which there are no objects with characteristics matching the phenomenon of longitudinal or transverse MRI relaxation. The result of this work is the elimination of aerated spaces in MRI images. The whole algorithm was implemented as an application in the MATLAB package.


Assuntos
Inteligência Artificial , Neoplasias , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Imageamento por Ressonância Magnética/métodos , Algoritmos , Neoplasias/diagnóstico por imagem , Técnicas de Cultura de Células
5.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232656

RESUMO

Cellular lactate is a key cellular metabolite and marker of anaerobic glycolysis. Cellular lactate uptake, release, production from glucose and glycogen, and interconversion with pyruvate are important determinants of cellular energy. It is known that lactate is present in the spectrum of neoplasms and low malignancy (without necrotic lesions). Also, the appearance of lactate signals is associated with anaerobic glucose, mitochondrial dysfunction, and other inflammatory responses. The aim of this study was the detection of lactate in cell cultures with the use of proton magnetic resonance (1H MRS) and a 1.5 Tesla clinical apparatus (MR OPTIMA 360), characterized as a medium-field system. In this study, selected metabolites, together with cellular lactate, were identified with the use of an appropriate protocol and management algorithm. This paper describes the results obtained for cancer cell cultures. This medium-field system has proven the possibility of detecting small molecules, such as lactate, with clinical instruments. 1H MRS performed using clinical MR apparatus is a useful tool for clinical analysis.


Assuntos
Ácido Láctico , Neoplasias , Glucose/metabolismo , Glicogênio , Humanos , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Prótons , Ácido Pirúvico
6.
Photodiagnosis Photodyn Ther ; 25: 492-498, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30738846

RESUMO

Photodynamic oxygen consumption was measured by changes in spin-lattice relaxation time (T1) in aqueous solution in a clinical GE scanner at 1.5 T. Similar measurements were attempted in excised laryngeal and thyroid tissues that were infused with Rose Bengal. First, T1 was measured as a function of dissolved oxygen in argon and in oxygen pre-saturated water samples that were opened to the atmosphere in a series of steps allowing air to diffuse into or out of solution; for both argon and oxygen saturated water solutions, stepwise air re-equilibration resulted in a return to air-saturated water T1. Secondly, T1 was measured as a function of time under type II photooxidative conditions in aqueous solution. Under type II photooxidative conditions, a 492 ± 53 ms increase in T1 was measured following 300 s of visible light illumination of aqueous solutions containing the photosensitizer Rose Bengal (2.5 × 10-6 M) and the singlet oxygen trap methionine (0.0012 M). The 492 ± 53 ms increase in T1 corresponded to consumption of all the measurable dissolved oxygen (˜ 0.1 mg O2 in 15.0 mL of H2O) during photooxidation of methionine in air saturated water. This rapid oxygen consumption, indicated by an increase in T1, is due to irreversible trapping of photogenerated singlet oxygen by methionine. Thirdly, an increase in T1 was observed in Rose Bengal infused normal laryngeal tissue, and in normal and cancerous thyroid tissue samples following 20 min of exposure to visible light. An increase in T1 was not observed after 40 min of illumination which suggests that the increases in T1 observed after 20 min were not due to water uptake, but rather to photoconsumption of interstitial dissolved oxygen.


Assuntos
Consumo de Oxigênio , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Rosa Bengala/farmacologia , Oxigênio Singlete/metabolismo , Linhagem Celular Tumoral , Humanos , Imageamento por Ressonância Magnética/métodos , Metionina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...